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ABSTRACT 

(Paper presented at the 1998 Microwave Vacuum Electron Devices Conference.) 

A series of comparisons between three different helix TWT design and simulation codes 
has been performed. The codes represent various different levels of approximation and 
speed. All codes utilize the sheath helix approximation. The 2-D PIC code, MAGIC, 
solves the Maxwell-Lorentz equations directly, in time, through simulations with large 
numbers of particles. Therefore, it is expected that the PIC code is capable of resolving 
the space-charge effects accurately. Unfortunately, because of long run times, it is 
difficult to perform many simulations with many different parameters in a timely manner, 
allowing a device to be designed and optimized numerically. The 2-D parametric code 
GATOR solves the envelope equation for the mode amplitude (hence the name "modal") 
of the electromagnetic field, and models the electron beam as an ensemble of rings of 
variable radius, making it much faster than the MAGIC code. However, the models to 
evaluate the DC and AC space-charge fields in GATOR are phenomenological, and 
typically less accurate over a wide range of parameters than in a PIC code. An important 
goal of the work reported here is to provide understanding of and possible improvement 
to the electrostatic model implemented in GATOR. The 1-D parametric code 
CHRISTINE is the fastest of the three codes, and it includes built-in parametric scan 
capability. Like GATOR it solves the envelope equation for the field amplitude in time 
and position, but it tracks only the axial particle motion. Its simple fixed disc model also 
allows for self-consistent calculation of the AC space-charge field. For a device whose 
electron beam is well confined by the radial focusing forces, CHRISTINE is able to 
reproduce accurately the performance of the device. Indeed, all three codes are in 
excellent agreement in the limit of a very strong solenoid magnetic field. Results of the 
comparison between MAGIC and GATOR for both a solenoid and PPM focusing cases 
will be discussed. 

(*) This work is supported by the Office of Naval Research Laboratory. The computational work was 
partially supported by a grant of HPC time from the DoD HPC Center CWES 
(a) Mission Research Corporation, Newington, VA 
(b) Science Application Corporation, McLean, VA 
(c) University of Maryland, College Park, MD 



SECTION 1. OVERVIEW 
A series of comparisons between three different helix TWT design and simulation 

codes has been performed. The codes represent various different levels of approximation, 
speed of execution, and simplicity of results. All codes utilize the sheath helix 
approximation. All codes are based on particle-pushing through the sheath helix fields to 
solve for the output power of the helix TWT. 

The 2-D PIC code, MAGIC,1 should have the best accuracy, especially in the area 
of space-charge effects, because of its faithful reproduction of the original Maxwell- 
Lorentz field equations. Unfortunately, MAGICs run-time is long, and its output can be 
unwieldy to the uninitiated. This is a major hindrance to its use as a design tool. 

The 2-D Modal code, GATOR,2 retains 2-D particle kinematics, but solves for 
just the mode amplitude of the sheath helix traveling wave (hence the name "modal"), 
making it much faster than the MAGIC code, and hence better suited for a design tool. 
However, since the sheath helix traveling wave is divergence-free, this leaves the 
"electrostatic" component of the field unspecified. An important goal of the work 
reported here is to provide understanding of and possible improvement to the electrostatic 
model implemented in GATOR in order to faithfully reproduce the 2-D particle 
kinematics in both the solenoid and PPM scenarios. Indeed, the original impetus behind 
this investigation was an apparent high degree of particle losses to the helix in a situation 
where experimental results and MAGIC simulations indicated otherwise. 

The 1-D Modal code, CHRISTINE,4 (sometimes called TINI), also solves for the 
amplitude of the sheath helix traveling wave, and it is the fastest of the three codes. 
However, it tracks only the axial motion of the particles and assumes a rigid radial profile 
for the beam. This permits a clever and considerably more direct attack on the space- 
charge problem, and CHRISTINE has a more consistent space-charge model than 
GATOR. Unfortunately, the assumption of a rigid radial profile is costly, since in a real 
tube the beam tends to move outward in radius as it slows down. The increase in radius 
results in improved beam coupling to the helix as it slows down, an effect which is 
noticeable in both of the 2-D methods, but is absent from CHRISTINE. 

The results of this study showed that in the infinite solenoid magnetic field limit, 
(e.g., no radial motion) all three codes are in excellent agreement on the power at the 
fundamental frequency, with MAGIC, GATOR, and CHRISTINE lying virtually on top 
of each other. In the linear growth regime, the power in the harmonics is also in rough 
agreement, with MAGIC consistently a little low in power. However, more obvious 
differences occurred in the power on the harmonics after saturation, with MAGIC in 
conflict with GATOR and CHRISTINE. The reason for this difference is unknown at this 
time, but one likely explanation is the neglect of grow-rate terms compared to the phase 
velocity term in the modal approximation, dz-^(ü/vph. 

Originally, when the infinite solenoid field was relaxed to the Brillouin value 
GATOR had beam losses. During the course of this work, GATOR was updated to 
provide an improved model for the electrons outside the nominal beam radius, e.g., 
"outlier" electrons, which seems to have cured this deficiency. MAGIC also shows some 
discrepancy of outer electron orbits in both the Brillouin flow and PPM scenarios. This 
discrepancy was traced to the fact that the particle charge and forces are assigned to 



nearest grid locations, which results in the rounding-off of the charge density profile and 
the smoothing of the forces over the outer two cells of the beam profile. The effect is 
partially remedied with an appropriate reduction in the azimuthal velocity of the outer 
electrons, consistent with a smoothed profile. 

In the Brillouin field, MAGIC and GATOR gave excellent agreement through 
saturation. After saturation, significant differences appeared, and seemed to indicate 
some remaining deficiency in the GATOR space-charge model, most likely due to some 
addition subtle inconsistency in radial factors. The problem seems to manifest itself first 
in the particle trajectories, which in turn affect their coupling to the RF. However, given 
the unsuitability of TWT's in the post-saturation regime, and the excellent agreement 
before saturation, this questionable post-saturation behavior does not present a problem 
for the use of GATOR in designing practical TWT's. 

In a PPM field, the agreement between MAGIC and GATOR up to saturation was 
also excellent. At saturation, there was some departure of the two methods. However, 
the comparison was made difficult because of the inability of MAGIC to produce an ideal 
match to the PPM field at the beam emission point. Thus, there was larger scalloping in 
the MAGIC trajectories, and the obvious potential which that creates for causing 
divergence of the two results. 

Based upon this study, the following recommendations are made. First, the 1-D 
modal method in CHRISTINE can be made much more accurate by adding a radial 
expansion model, if a suitable means of computing the radial expansion can be arrived at. 
Even a user-supplied radial expansion parameter would be highly useful. Second, the 
space-charge model in the 2-D modal method, GATOR, needs to plot an error quantity as 
a function of axial position, e.g., IV-eE-pl/po- Both CHRISTINE and GATOR should 
track the validity of the modal approximation. These consistency checks would be very 
helpful to the user for determining accuracy of the model, without having to resort to PIC 
methods for verification. Third, the 2-D PIC method, MAGIC, needs built-in Brillouin 
and PPM emission models which are consistent with its finite-difference grid forces. 



SECTION 2. INFINITE B-FIELD COMPARISON 
The base test case for the comparisons in this paper are based upon the C-Band #8 

tube built specifically for experimental comparison purposes by Northrop. The pertinent 
design parameters are: 

Helix Length = 9.5758 cm, 
Wall Radius = 2.794 mm, 
Helix Radius = 1.2446 mm, 
Helix Pitch = 0.80137 mm, 
Helix Pitch (Angle) = 5.851 degrees, 
Effective 2-D dielectric constant of the helix support rods = 1.75, 

Frequency = 5.0 GHertz, 
Nominal RF Input Power = 30 milliwatts, 
RF Input Power Range = 0.1-100 milliwatts, 

Beam Voltage = 3.00 kVolts, 
Beam Current = 0.17 amps, 
Beam Radius = 0.5 mm, 
Beam Profile = Flat, 
Brillouin Field = 0.94 kGaüss uniform, 

For the so-called infinite-B field comparisons, an actual field of 25 kG (= 20 times 
Brillouin) was used. In all runs at this field, there was no observable radial motion in 
either 2-D model. In GATOR, an initial condition of mspac=l was used. The proper 
cold-test behavior, e.g., dispersion and impedance, of the sheath helix element in each of 
the three methods has been widely studied, and verified. 

2.1 DRIVE CURVE 
Drive curves comparing all three methods are illustrated in Figures 2.1.1-2.1.3. 

All drive curves are represented with both log-log, and linear-linear scales. The log-log 
scale plot is useful for comparing the linear growth regime at low power levels. The 
linear-linear scale plot is necessary to compare the power levels at saturation. In addition, 
the drive curves are shown for three positions down the length of the tube, at 7 cm, 8 cm, 
and 9 cm. 

In the linear growth regime, the initial slope on the log-log plots should be unity. 
All three codes show the initial unity slope. However, the 1-D modal method, 
CHRISTINE, shows an interesting power offset from the 2-D methods, which is apparent 
in all plots. This means that by the 7 cm position, the wave in CHRISTINE has grown 
slightly less, about 1 dB out of 37.5 dB gain, than that of the 2-D methods. This 
discrepancy remains unresolved, but is sufficiently small that it may be caused by any 
number of second-order effects, or possibly by some, as yet, undiscovered intrinsic 
difference between the 1-D and 2-D methods at the input injection point. 



Logarithmic Drive Curves at z=7cm for 25 kG field 
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Figure 2.1.1  Infinite field drive curve comparison at 7 cm.   Saturation occurs only at very high 
input power at or above 100 milliwatts. All methods agree across the range. 
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Figure 2.1.2 Infinite field drive curve comparison at 8 cm. Saturation occurs at the nominal 30 
milliwatt input power. Excellent agreement across the range, even as the saturated 
power is decreasing in the 30-100 milliwatt range. 
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Logarithmic Drive Curves at z=9cm for 25 kG field 
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Figure 2.1.3 Infinite field drive curve comparison at 9 cm. Saturation occurs at about 8 milliwatts 
input power. The saturated power decreases by a factor of two from peak. 1-D modal, 
CHRISTINE shows a slightly lower decrease. 

Saturation occurs at about 125 watts output power at all three locations. The input 
power required to achieve saturation is obviously less for the greater length locations, 
though.  As the input power exceeds that necessary for saturation, the power is seen to 



decrease, as expected from ballistic debunching. For the longest length at the highest 
input power, e.g., 9 cm at 100 milliwatts input, the post-saturation power predicted by the 
2-D method, GATOR, is 15 watts higher, 65 vs. 50 watts, than the 1-D modal and 2-D 
PIC methods. There is frequent divergence in GATOR's post-saturation behavior 
throughout this study, and reasons for the differences are explored in later sections. 

2.2 HARMONICS 
A closer look at the power in the 1st harmonic shows that, despite the overall 

agreement in power levels between the codes, there are still some areas of systematic 
disagreement. Figure 2.2.1 shows the growth of the fundamental and harmonic powers 
for the nominal input power of 30 milliwatts. The most interesting feature is the dip in 
harmonic power, known as the "Whaley dip", which occurs at 7.8 cm in the 2-D PIC 
method, and 8.5 cm in the 1-D modal and 2-D modal methods.  The dip is anticipated, 
and is due to the beam bunches, which travel at the phase velocity of the fundamental, 
eventually falling out of phase with the harmonic signal, which travels at a slightly 
different velocity, because of circuit dispersion.5 It is seen that the modal methods agree 
on the location and severity of the dip, while the 2-D PIC method shows a less severe dip, 
which occurs earlier. The exact reason for this interesting difference between the modal 
and PIC methods remains unknown, however, it is possible that approximations of the 
modal method, e.g., the neglect of terms involving the derivatives of the mode 
amplitudes, might account for the differences, as discussed in later sections. By way of 
counter argument, there is some experimental evidence which seems to be in closer 
agreement with the location and size of the dip as predicted by the modal methods.   One 
way in which the PIC method might be subject to failure is the possible effect of 
boundary conditions and the presence of a small reflected wave component.   It is even 
possible that the PIC and modal results might both be accurate, if for example, the 
difference was due to the fact that the PIC method illustrates all power flow, including the 
kinetic flux (see later sections), whereas the modal methods (and the experimental 
measurements) indicate only the power flow on the helix. Further research into this issue 
is obviously necessary. 

The comparison of harmonics is complicated by an unfortunate failure of the 2-D 
PIC method to track the complete power evolution of the harmonic signal, as is evident in 
the figure. The 2-D PIC method suffers from having an absolute floor, below which it is 
incapable of diagnosing the power. This floor exists at 1 milliwatt for these runs, and 
seems to relate to the level of particle noise and the length of Fourier-transform time 
integral. It is believed that the origin of this floor is noise in the roughly 18 watts 
Poynting flow from the DC electric and magnetic fields of the beam; e.g., there is a 1 
milliwatt particle noise component on top of the 18-watt DC power flow. There is no 
simple way to remove the noise since the 2-D PIC method does not separate DC and RF 
fields, instead all physics is present in a single field. Unfortunately, increasing particle 
number and increasing the length of the Fourier time integral both reduce particle noise at 
a very slow rate to have much impact on the problem. 
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Figure 2.2.1 Growth of power in fundamental and harmonic vs. length down the tube for 30 
milliwatts input power. An interesting difference between the PIC and modal methods 
is apparent in the harmonic power "dip" after saturation. The apparent floor in PIC 
power at 1 milliwatt is an artifice of a noise limitation on the power diagnostic. 

Despite the low-power failings of the 2-D PIC power diagnostic, it is possible to 
compare the harmonic power in the latter part of the linear growth regime between 4 cm 
and 6 cm, where the agreement seems quite good between all three methods. The growth 
rate of the harmonic is expected to be twice that of the fundamental, e.g, 118 dB/cm for 
the harmonic as opposed to 58.8 dB/cm for the fundamental. The 1-D modal method 
holds closest to this growth rate, while the 2-D PIC method shows significant reduction 
in growth rate earlier than the other methods. 

Growth of Harmonics, MAGIC vs. Christine 
1e-t3 

1e+2 • 

Figure 2.2.2 Comparison of 1-D modal and 2-D PIC harmonic growth. The differences in the 
behaviors of the power dips at saturation and the linear regime growth rates points to 
some fundamental area of difference between the physics of the modal and PIC 
methods. 



The 1-D modal and 2-D PIC methods can be contrasted even more by looking at 
the higher harmonics. Figure 2.2.2 shows that the difference between the linear regime 
growth rates for the 1-D modal and 2-D PIC methods gets larger for higher harmonic 
numbers. In addition, the behavior of the power dips at saturation is also markedly 
different between the methods. It is tempting to search for some physical effect which 
could simultaneously cause the 2-D PIC method to saturate the harmonic growth rates 
earlier and smooth out the effects of the power dip. To date, no such physical effect has 
been positively identified. 

2.3. NECESSITY OF HARMONICS 
Inclusion of harmonics is a necessity for any helix TWT which comes within 

about 5 dB of saturation. An investigation of MAGIC vs. CHRISTINE runs indicated 
that about four to five harmonics are necessary for good accuracy. It is probable that only 
one or two harmonics of the sheath helix traveling wave are necessary, though; the 
requirement for four to five harmonics comes primarily from the space-charge model. 
Indeed, GATOR gave excellent agreement to MAGIC with only one harmonic of the 
sheath helix traveling wave. (GATOR used five space-charge harmonics, while MAGIC 
always includes all harmonics up to its time-step resolution, e.g., typically a hundred.) If 
harmonics are eliminated in either CHRISTINE or GATOR, the helix typically saturates 
at a power level 40-100% larger than realistic values. Hence, the use of modal methods, 
either GATOR or CHRISTINE, without harmonics turned on is extremely risky for 
design analysis. The obvious recommendation is therefore that any "default state" of 
these codes should have harmonics turned on. 

The GATOR code presents an additional problem with regard to the harmonics. 
Apparently the GATOR code is based on spatial harmonics rather than temporal 
harmonics. This is in direct contrast to the physical picture of a temporally periodic 
signal. The simple mathematical property of being periodic leads to a Fourier series, e.g., 
temporal harmonics. Even in the PIC code which must necessarily contain startup 
harmonics, the picture is one of a periodic signal for a single input frequency. The spatial 
harmonics used in GATOR imply frequencies which deviate from harmonics of the input 
by the corresponding deviation of the dispersion relation from flatness. Obviously for a 
flat dispersion relation such as a vaned TWT, there is little difference between the 
temporal and spatial harmonics approaches. However, for unvaned helices and helices 
with strong tapers, the potential for discrepancy due to the use of spatial instead of 
temporal harmonics warrants some careful investigation. In fairness, and despite these 
reservations, it must be noted that GATOR has, in fact, been used to successfully model 
helix TWT's with very dramatic tapers for the Hughes Corporation.7 



SECTION 3. BRILLOUIN B-FIELD COMPARISON 
In this section, we investigate the importance of radial motion on the helix TWT 

performance. The basic picture is that, in real tubes, the beam typically expands as it 
slows down. The expanded beam lies on average closer to the helix, and therefore 
couples more strongly to it. The effect is sufficiently important that it should never be 
neglected in any design application. Since the 1-D modal method, CHRISTINE, cannot 
accommodate radial motion, it will not be discussed any further, except to point out that 
the most important area for improvement in the 1-D modal method would obviously be to 
add some type of radial expansion model. 

3.1 IMPORTANCE OF RADIAL MOTION 
Figure 3.1.1 shows a comparison of the previous infinite B-field drive curves to 

those at the Brillouin field for the 2-D PIC method. In the Brillouin field, the tube is seen 
to saturate at an input power which is 8 dB less than that required for saturation in the 
infinite field. In particular, whereas saturation was not seen at 7 cm in the infinite B-field 
case for input powers levels below 100 milliwatts, it is seen for a Brillouin field. 

Effect of Radial Motion on MAGIC Drive Curves 
1e+03 

1e+02 

Pout (watts) 

1e+01 

7 cm, Brillioun 
8 cm, Brillioun 
9 cm, Brillioun 
7 cm, Infinite E 
8 cm, Infinite B 
9 cm, Infinite B 

1e+00 1e+01 
Pin (milliwatts) 

1e+02 

Figure 3.1.1 Comparison of infinite-B field and Brillouin B-field drive curves for the 2-D PIC 
method. The radial motion in the Brillouin field results in saturation 8 dB earlier, as 
indicted by the arrows, which is a very significant effect. 

3.2 DRIVE CURVE 
Figure 3.2.1 shows the drive curves at 7 cm for the Brillouin-focused TWT for the 

2-D modal (GATOR) and 2-D PIC (MAGIC) methods. As before, there is excellent 
agreement in the linear growth regime, and in fact, all the way up to saturation. However, 
the post-saturation behavior is noticeably different. The 2-D PIC method (MAGIC) 
predicts a peak power at 7 cm of 112 watts when the input power is 40 milliwatts, while 
the 2-D modal method's peak is 115 watts and occurs at 30 milliwatts input. The 2-D 
PIC method (MAGIC) has a slower drop off in power after saturation than does the 2-D 



modal method (GATOR), which explains the peak power condition at a slightly higher 
input power level. The power differences will be seen to correlate with subtle differences 
in the particle trajectory and phase-space plots in the following sections. An exact 
explanation for the differences is unknown, but the issue is explored further in the next 
section, including one possible conjecture. Drive curves at 8 cm and at 9 cm are not 
shown, but they further illustrate the differences between the methods in the post- 
saturation regime. 
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Figure 3.2.1 Brillouin field drive curve comparison at 7 cm. There is excellent agreement in the 
linear growth regime and up to saturation at 30 milliwatts. The behavior past 
saturation indicates significant differences between the methods. The exact reason for 
this difference is not known, but is investigated in the later sections. 
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Figure 3.3.1 Growth of power in fundamental and harmonic vs. length down the tube for 30 
milliwatts input power in a Brillouin focused TWT. There is excellent agreement up to 
saturation. Past saturation, the power drops off more rapidly in the 2-D modal 
(GATOR) method, but ultimately does not drop as low. (The apparent floor in PIC 
power is an artifice of a noise limitation on the power diagnostic.) 

3.3 DETAILS OF SINGLE BRILLOUIN RUN 
The markers at 30 milliwatts input power in the Figure 3.2.1 indicate the single 

ran which will be examined in this section. Figure 3.3.1 shows the evolution of power in 
the fundamental and harmonic down the length of the TWT. The harmonic power shows 
the now familiar offset in magnitude and shift in the position of the dip that was seen in 
the infinite-B field scenario. The fundamental power shows truly remarkable agreement 



up to saturation, on both the logarithmic and linear scale. Then, just as seen on the drive 
curves, there is significant departure past saturation. 

Two features are worthy of comment. First is the more rapid drop in the power 
past saturation for the 2-D modal method. Second is that, despite the more rapid drop, 
the power ultimately does not fall as low as does the 2-D PIC method. The drop in power 
is due to the re-absorption of RF back onto the beam, caused by the slowed-down 
bunches having unfavorable phasing with regard to the RF. If space-charge forces were 
not present, the beam could re-accelerate and completely debunch, and the process would 
start over again. One possible explanation for the observed behavior in the 2-D modal 
method (GATOR) is that at saturation it is experiencing excessive space-charge forces. It 
is not possible to say conclusively that this is occurring, however, there is additional 
evidence supporting this conclusion. 

MAGIC 

£"-«* 

Figure 3.3.2 Particle trajectories for 30 milliwatts input into a uniform Brillouin magnetically 
focused helix TWT. The visible agreement in the radial motion between the 2-D PIC 
(MAGIC) result and 2-D modal (GATOR) result is pleasing. Identifiable differences 
include larger radial excursion of the GATOR beam and nonlaminarity of the outer 
part of the MAGIC beam. 

Figure 3.3.2 shows the particle trajectories from the MAGIC and GATOR runs. 
The similarity between the 2-D PIC and 2-D modal results, especially in the radial 
motions of the particles in the Brillouin field, is quite pleasing. Care was taken to insure 
that both snapshots were taken at the same time during the RF cycle, and that six rays or 
emission points were used in both models. Are there any visible differences which might 
be linked to the discrepancy in the power past saturation?   The 2-D modal (GATOR) 
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method shows slightly larger radial expansion. In addition, there is slightly more 
debunching near the end of the tube in the 2-D modal method (view the figure at an 
oblique angle to better discern this property). Both of these effects are consistent with 
excessive space-charge forces, resulting in more rapid debunching. The larger radial 
expansion is probably the cause of the more rapid decline in power, since the particles at 
higher radius couple more strongly to the wave, and hence reabsorb power more quickly 
after saturation. It is important to recall that for the infinite B-field case, there was only 
slight discrepancy in the power after saturation, so the larger discrepancy in the Brillouin 
case must almost necessarily be related to radial motion. 

Additional visible differences between the two methods are the starting condition 
and laminarity of the beam at the input end. These issues are discussed in a later section 
involving PPM focusing, and are not thought to be greatly significant for the Brillouin 
case. 
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Figure 3.3.3 Particle phase-space for 30 milliwatts input into a uniform Brillouin magnetically 
focused helix TWT. The visible agreement between the 2-D PIC (MAGIC) result and 
2-D modal (GATOR) result is notable. Identifiable differences include better preserved 
wave troughs and phase coherency past saturation in MAGIC. 

Figure 3.3.3 shows the electron phase-space, which illustrates the differences 
between the two methods past saturation more clearly. Again, there is definitely greater 
debunching in the 2-D modal (GATOR) method, and in addition, the general outlines of 
the wave troughs appear to be less sharply defined than in the 2-D PIC method. 
Normally, such an effect is associated with numerical noise; however it seems counter- 
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intuitive to find a higher level of noise in the modal method than in the PIC method (PIC 
methods are famously noisy!). Perhaps in GATOR there is still some radius-dependent 
factor applied to each particle's space-charge force which should not be there, or some 
effect which remembers a particle's birth radius rather than using the actual radius of a 
particle. These suggestions are made because past saturation there is considerably more 
radial mixing, which would offer greater opportunity for noise generation from one of the 
aforementioned effects. 

3.4 OUTLIER ELECTRON EFFECT IN GATOR 
One impetus behind the study discussed in this paper was a fairly significant 

discrepancy between the body current originally predicted by the 2-D modal method, 
GATOR, and the 2-D PIC method. The modal method originally predicted greater than 
10% of the beam striking the helix in a Brillouin field, while the PIC method indicated 
virtually no current to the helix. Experimental evidence eventually sided with the PIC 
method, and a search for a cause began. It was ultimately discovered that the outlier 
electrons in the modal method, those significantly beyond the mean radius, were 
experiencing unphysically large azimuthal velocities, consistent with an equilibrium at 
their large radius, rather than the initial equilibrium at a much smaller radius. This defect 
in the model was remedied, and the result was dramatically improved beam confinement, 
such that virtually no current to the helix occurred, in accordance with the experimental 
observations. From a practical point of view, the identification and remedy of this 
previous adverse effect in the 2-D modal method is probably the most important 
achievement of the work discussed here. All results presented in this and the following 
sections include the proper treatment of the outlier electrons. 

3.5 EMISSION CONDITION AND NONLAMINAR FLOW IN MAGIC 
Laminar flow of a beam in a uniform magnetic field is possible. The electrons 

must have an azimuthal velocity such that the vQxBz force exactly cancels the Er space- 
charge force. For the nonrelativistic flat current profiles used in this study, the angular 
velocity is a function of radius: 

ve{r) = \r[ac-p]-2co) 

0 1/9 
where Qc = eB$/me is the electron cyclotron velocity, and Cfy = (ne /£0me) is the plasma 
frequency of the beam. The Brillouin field condition, Qc =^2 dip, is obvious, and at 
exactly the Brillouin field ve(r) = -|-ü)fr. 

There is a noticeable nonlaminarity of the MAGIC beam lines early on. It was 
eventually discovered that this was due to a peculiar effect of the finite-difference force 
algorithm within the MAGIC code. The particles feel a force which is partially averaged, 
and then linearly interpolated, over its nearest two radial cells. The result is an artificial 
rounding of the sharp corner in the force profile. The same result would occur if the edge 
of the beam profile were slightly smoothed, instead of making a perfect step function. An 
illustration is shown in Figure 3.3.2. In later runs, it was found possible to partially 
remedy this effect by giving the outer electrons in MAGIC a smaller amount of azimuthal 
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velocity, consistent with the reduced forces that were felt. However, perfect laminar flow 
remained difficult, and clearly it would be beneficial for the MAGIC code to have this 
effect treated internally in a self-consistent matter, e.g., as a Brillouin emission option. 

Rounded Corner 
in E-field profile 
for Lorentz force 

Figure 3.5.1 Illustration of the cause behind the non-laminar flow in the outer electrons of the 2-D 
PIC beam trajectories. The force profile is artificially rounded, resulting in a force 
which is smaller than analytically calculated. 

Another apparent difference, also due to a peculiarity of the 2-D PIC method, is 
the starting condition at the metal surface. It will be noted, that both methods start the 
beam about 7 mm before the zero coordinate, where the RF enters. The 2-D PIC method 
can only emit particles from a conductor surface. Once emitted, at the full 3.0 kVolt 
beam energy, the electrons experience a space-charge depression, which slows them 
down by about 12 volts. In 2-D PIC, this is an entirely natural result of having the 
parallel, e.g., radial, electric field be zero on the metal surface and become non-zero a 
short distance away, due to the DC space-charge of the beam. Unfortunately, the axial 
reduction in velocity must also be accompanied by a slight radial impulse, which causes 
an undesirable initial scalloping of the beam in the 2-D PIC model. In the 2-D modal 
method, the initial space-charge depression is computed analytically and is applied to the 
beam energy before emission. In addition, there is no requirement for a boundary 
condition on the electrostatic field at the emission surface. Hence, beam creation in the 
2-D modal method can be made absolutely laminar, as evidenced by the perfect flat 
trajectories before the RF region. 

3.6 RADIAL SHEAR 
Radial shear occurs when electrons in the outer part of the beam experience 

slightly different axial accelerations than electrons in the inner part of the beam. There 
can be DC sources of radial shear and AC sources of radial shear. The DC sources of 
radial shear arise within the diode region and where the magnetic field immersion of the 
beam is changing. DC sources of radial shear inevitably result in the outer part of the 
beam going slightly slower than the inner. The AC source of radial shear is due to the 
radial profile of the RF axial field inside of the helix, with particles closer to the helix 
receiving a slightly larger axial force than particles on axis. 
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Figure 3.6.1 Contours of charge (top) and axial current (bottom). Radial shear is evident 
before saturation and appears to reverse after saturation; however, the direction of tilt is counter- 
intuitive, since outer electrons are expected to slow more than inner electrons prior to saturation. 

Figure 3.6.1 shows contours of space-charge and contours of axial current, e.g., 
charge times velocity, from the 2-D PIC method (MAGIC). Both figures contain similar 
patterns, indicating that radial shear in the velocity is imperceptible compared to space- 
charge separation as far as current bunching is concerned. Hence, the only indication of 
radial shear is the accumulated effect which it has on the space-charge separation. It 
appears as if there is some evidence of radial shear, with a noticeable tilt of the bunch 
towards the output end of the TWT before saturation, and possibly a reversal of this 
slope after saturation. 

This result seems to be counter-intuitive, since the outermost electrons should 
experience stronger deceleration than the inner electrons, by virtue of their proximity to 
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the helix, and hence the bunch should tilt towards the input end of the TWT.   No 
explanation for this counter-intuitive observation on the shear is offered here. 
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SECTION 4. PPM B-FIELD COMPARISON 
Additional simulations were performed with the 2-D modal (GATOR) and 2-D 

PIC (MAGIC) methods replacing the uniform Brillouin field with a PPM field. The exact 
formula used for the PPM field in both methods was: 

Bz(z,r) = Sz0 Io( fcppm r) sin( kppm (z-Zo)), 

Br(z,r) = -B& Ii( fcppm r) cos( kppm (z-zo)), 

where the peak field on axis was £z0 = 1.326 kGauss (= 1.414 x Brillouin field), the PPM 
length was 0.6604 cm, e.g., kppm = 7c/0.6604cm = 4.757 cm"1, and the axial position of the 
PPM's was selected so that there was a Bz null exactly at the emission point, 0.2 cm 
before the location where RF was introduced, e.g., z0 = -0.1302 cm. The angular velocity 
given to the beam at the emission point was the same as for the Brillouin field, e.g., 

,M= vr*V- 

GATOR 

--T/ 

i_-3«r  .* 

MAGIC 

f\ I A.S 
IÄ1 

_y-^_^.. 

Figure 4.1 Particle trajectories for 30 milliwatts input into a PPM focused helix TWT. The axial 
bunching is in good agreement, but the differences in radial motion in the PPM field 
distract from a good comparison. The MAGIC code suffers significantly from emission 
mismatch difficulties and a force smoothing effect on the outermost ray. 
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Figure 4.1 shows the particle trajectories for 30 milliwatt input power into a PPM 
focused tube. The axial bunching is in good agreement, as was the case with the 
Brillouin field. However, the radial motion is visibly quite different between the two 
cases. In particular, the 2-D PIC method (MAGIC) suffers from significant mismatch at 
the emission point, which leads to much greater scalloping than for the 2-D modal 
(GATOR) method. As previously discussed, the 2-D PIC method must emit particles 
from a conducting metal boundary which suppresses the radial electric field, and causes a 
local mismatch. Attempts to compensate for the mismatch by altering the radial velocity 
at emission were largely unsuccessful. This remains a difficult problem for the 2-D PIC 
method. An alternative to launching from a metal is to import a beam and its associated 
electric field from a previous run. This previous run would, of course, have to be a gun- 
type run, which would require proper design of the gun so that a good focus was 
achieved, a possibly time-consuming task. An alternative would be, in the future, to 
endow the PIC code, MAGIC, with an ideal Brillouin beam emission capability, which 
would, in principle, generate the import beam and field internally to satisfy the ideal 
Brillouin flow condition, or the ideal PPM confinement condition. 

Logarithmic Drive Curve at 7cm for PPM field 
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Figure 4.2 PPM field drive curve comparison at 7 cm. There is excellent agreement in the linear 
growth regime, but divergence at saturation which occurs at 30 milliwatts. The 
disagreement past saturation is similar to that observed for the Brillouin field. 

It is also interesting to note that the 2-D modal (GATOR) beam confinement after 
saturation is improved over that from the Brillouin field run, and is equal to that from the 
2-D PIC (MAGIC) method. In the previous section it was hypothesized that the particles 
in GATOR were experiencing excessive space-charge forces after saturation, which 
caused the poorer beam confinement. These same forces should be at work in the PPM 
case; however, somehow, they do not result in loss of beam confinement, possibly as a 
result of the oscillatory nature of the static fields seen by the particle. 

Figure 4.2 shows the drive curves at 7 cm for the PPM focusing field. The 
overall trends are similar to the Brillouin case, with good agreement in the linear regime, 
and a noticeable divergence after saturation. In fact, the divergence occurs earlier, 
slightly before saturation for the PPM case, probably a result of the additional scalloping 
in the 2-D PIC method (MAGIC). The behavior past saturation shows the more rapid 
drop in power for the 2-D modal (GATOR) method, similar to the Brillouin case, 
indicating that whatever was causing this effect in the Brillouin field is probably also at 
work in the PPM ran. 
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Logarithmic Power vs. Z for 30 mW input in PPM Field 
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Figure 4.3 Growth of power in fundamental and harmonic vs. length down the tube for 30 
milliwatts input power in a PPM focused TWT. There is excellent agreement up to 
saturation. Past saturation, the power drops off more rapidly in the 2-D modal 
(GATOR) method, but is still in better agreement than with the Brillouin case. 

Figure 4.3 shows the growth in power down the tube for the 30 milliwatt input 
power case. The figure shows all of the previously established features, e.g., good 
agreement in the linear regime, faster drop in power for the 2-D modal method after 
saturation, and marked differences in the harmonic after saturation. Nevertheless, the 
agreement after saturation is better than in the Brillouin case. Given that the 2-D modal 
method's radial confinement is better for PPM confinement, it is likely that the 
hypothesized excessive space-charge forces are strongly correlated with radial expansion 
of the beam. 

Figure 4.4, showing the particle phase-space for the 30 milliwatt case 
corroborates this hypothesis. The agreement between the methods after saturation is 
visibly better than for the Brillouin case. In particular, the 2-D modal method's bunches 
are not as spread out, and are less noisy. Thus, despite the obvious mismatch in the beam 
trajectories, the better radial confinement results in a closer match in the phase-space past 
saturation. 
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Figure 4.4 Particle phase-space for 30 milliwatts input into a PPM focused helix TWT. The visible 
agreement between the 2-D PIC (MAGIC) result and 2-D modal (GATOR) result is 
better than for the Brillouin focused beam, probably because of better radial 
confinement. 
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SECTION 5. ANALYSIS OF ACCURACY 
Most of this section will discuss accuracy of the modal methods, since these 

methods are simplifications of the Maxwell field equations, whereas the PIC method does 
not simplify these equations. The PIC method does involve a simplification, though, 
namely the course-graining of space, and this aspect will also be discussed. (All three 
methods simplify by ignoring the third dimension.) 

One of the most difficult and sometimes frustrating aspects of working with 
design codes is the inherent uncertainty as to their accuracy in some new regime being 
explored. Most design codes are based on a set of assumptions which have validity 
criterion which are easily expressed in a mathematical form, and which are readily 
calculable from information within the design code itself; yet very few bother to evaluate 
the validity criterion. The omission is time saved by the code programmer who might be 
under a tight deadline, but the cost in time for the user can be enormous. Whenever 
possible, mathematical validity criterion should be evaluated and displayed, in order to 
help the user judge accuracy in a new parameter regime, instead of relying on anecdotal 
advice. 

5.1 ELECTROMAGNETIC / ELECTROSTATIC SEPARATION 
The analysis of the 2-D modal method, GATOR, involves the independent 

computation of the wave electric field and an electrostatic field, e.g., the electric field is 
the sum of two different electric fields, each of which obeys a different evolution 
equation. (In GATOR, the electrostatic field is further divided into AC and DC space- 
charge parts.) The electromagnetic / electrostatic division is a fairly common practice in 
a wide variety of plasma physics problems, when either a propagating electromagnetic 
wave is mildly affected by space-charge, or when a propagating electromagnetic wave 
interacts with a space-charge wave in a small, spatially-localized region. (The 
CHRISTINE code is actually based on a single electric field model, and thus does not 
pertain to the discussion in this section.) 

The separation of the electric field into two distinct parts naturally leads one to the 
vector-scalar potential formalism, since this formalism similarly desires to separate 
Maxwell's equations into electromagnetic and electrostatic parts. The monopole 
equation, V-B=0, establishes the existence of a vector potential, A, such that B=VxA. 
Faraday's Law, 9,B+VxE=0, establishes the connection between the electric field and the 
vector potential, 3,A+E+V(j)=0, with (j>, the scalar potential, being a completely arbitrary 
scalar function, similar to a constant of integration. The specification for the arbitrary 
scalar field, <|>, is called the gauge. The obvious reason for having a non-zero scalar 
potential becomes apparent when one takes the Fourier transform (3t=»-/co) of the 
Faraday Law relationship, rearranged here with just E on the left hand side: 

Em = lOOAfl, - V<|>a>   . 

Since Eco(co=0) may be non-zero, it implies either that Aa,(G>=0) must go to infinity (an 
undesirable property), or that V(()to(co=0) is non-zero (a much better alternative).   Thus, 
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whatever gauge is selected, clearly it is desirable that Eco(co=0)=-V(j)co(co=0). Ampere's 
Law and Gauss's Law give the evolution equations for the two potentials, 

(ö
2
A - c2VxVxA + i©V<|> + J/e = 0  , 

V2())-icoV-A + p/£ = 0  , 

where the "co" subscript has been dropped. The specification of a particular gauge is 
often used to simplify the above equations even further, but is not necessary for our 
purposes. 

A Poynting theorem for the potentials can be created by multiplying the complex 
conjugate of the vector equation by icoeA, multiplying the scalar equation by icoecb*, with 
the substitution, p=V-J/(/co) from the charge continuity equation, and adding together the 
two equations. The result is: 

V' —AxVxA 

i2    ico 

+ V •[<!>* (j-icoe(i(BA-V<|>))] ■ 

toe|coA|2 - —|V x A|2 - /coe|Vcbp + 

JcoA-J*-(Vf)-J = 0 

The first term is recognizable as the "electromagnetic" part of the V-(ExB) Poynting flux. 
The second term is a new quantity, which is sometimes referred to as the "kinetic" flux. 
It is proportional to electrostatic potential. Note that at zero frequency, the 
electromagnetic Poynting flux is zero, and the kinetic flux is just <|>*J, e.g., the 
electrostatic potential energy carried by the particle motion. The second line of the 
energy balance equation consists of purely imaginary terms representing the field energy, 
and the last line of the energy balance equation is the E J work term, with a real part that 
matches Ej\ but a different imaginary part. 

There are, of course, an infinite variety of ways to combine the two potential 
equations into Poynting-like energy balance equations. However, if the 
"electromagnetic" part of the Poynting flux is to be isolated from the zero-frequency ExB 
energy, as desired, it is obviously necessary to introduce a secondary "kinetic" flux 
similar to that illustrated. The kinetic flux at non-zero frequencies often plays an 
important phenomenological role; in the case of GATOR, it appears as the "AC space- 
charge." The important point to note is that the kinetic flux at non-zero frequencies 
depends on the choice of gauge, e.g., on the choice of the integration constant <|). The 
kinetic flux itself can be rewritten as 

rfa,,c = f (J - icoe(icoA - V*)) = f V x V x A   , 
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which illustrates that it is intrinsically a cross-term between vector and scalar potentials. 
There is a direct, but seldom realized, connection between a phenomenologically derived 
form of the kinetic flux and the gauge. It is not possible to derive a kinetic flux and 
choose a gauge, e.g., the Coulomb gauge, independently. Attempts to do so very often 
result in null- or double-counting of terms in the power balance.8 In the 2-D model, 
GATOR, the coulomb gauge is used as a basis of the AC space-charge field. It is not 
known whether the AC space-charge power, e.g., the kinetic flux, is computed. 

5.2 MODAL METHOD BASED ON POTENTIALS 

In a cold test of an attenuation and reflection-free TWT, <j)=0, and there is a vector 
potential, A0, which satisfies V-A0=0 and c2V2A0+co2A0=0, and which we shall normalize 
such that the Poynting flux is unity: 

Re|z-i(E0xB;)| = Re^(A0xVxA;)URe|^(A0-3X-Ao-VAy| = l  . 

Given that there is no attenuation and no reflection, the above should be true all along the 
z-direction. The cold-test vector potential, A0, is the TWT "mode," and the "modal" 
method is derived by assuming that in the general case, the vector potential is given by: 

A = a(z)A0   . 

In other words the vector potential is the product of the cold-test vector potential and an 
amplitude function, a(z), of just the tube axis direction, z. With the unit normalization of 
the cold-test vector potential, it follows that the Poynting flux associated with the vector 
potential is just P = a\z). Under the modal assumption, the electric and magnetic fields 
are given by: 

E = zcoaAo - V(|)  , 

B = aVxAo + a'zxAox  , 

where a' designates da/dz. It is important to note that the modal assumption is not a 
choice of gauge; it is an assumption on the character of the transverse electric field. As 
such, it represents an approximation, which should be verified to insure that it remains 
valid. The best way to verify the approximation is simply to insert the approximate fields 
into Gauss's and Ampere's Law and examine the error. 

It is convenient to separate out from the potential, <J), a part which is proportional 
to the mode growth, a', 

c2 

(j) = 0 + i—a'A0z   , 
CO 

22 



with the remaining potential denoted as 0>.   When the fields are plugged into Gauss's 
Law, the result is: 

( c2 ^ 
<& + i—a'A0? 

<*> J 

-1 •      ,A =—p + icofl A0z 
£ 

When the above fields are plugged into the complex conjugate of Ampere's Law and then 
dotted with icöeAo/2, the result is: 

^(Ao.3X-A„V^y = -|Ao.(j--toV*>0(Kf-|Aolf)a»   . 

Note that the term in from of a' is just the z-directed Poynting flux of the cold-test mode, 
which was normalized to unity. Assuming that a is pure real, take the real part of the 
above equation to get the evolution equation for the mode amplitude, a: 

fl' = _Re|f^A0-(r-/ö)eVO,)|   . 

This equation is essentially the electromagnetic EJ with the usual additional space- 
charge correction term. Note that the previous equation for the space-charge correction 
term, O, contains terms in a', the growth rate, which are usually ignored, in order to 
prevent the two equations for a' and O from being coupled. These terms are id£a'A0z 

compared to the charge, p, and i(c2/(£>)a'A0z compared to the potential O. Obviously, a 
good test of the validity of the space-charge model in GATOR would be to compare the 
magnitudes of these terms. 

5.3 ACCURACY CHECK FOR THE MODAL METHODS 
The analysis for the 1-D modal method, CHRISTINE, is not based on a separation 

of power into electromagnetic and electrostatic parts. Rather, it is based upon the 
following equation for electric field, which is exact: 

V2 + 
CO 

E = -icofi0 1 + ^yVV 
CO 

in the 
When there is no radial motion, the V±-J± terms vanish, resulting in considerable 
simplification.     The  "forward propagating mode"  assumption then results  it 
substitution: 

d,    ->   -i    , 
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where vph is the circuit phase velocity. Only radial derivatives remain, which form a 
fairly typical radial boundary value problem, with the usual Bessel function solutions. So 
where was the approximation? It was, in fact, essentially, the same as the neglect of the 
amplitude growth rate terms, a', from the previous analysis. A more accurate modal 
approximation would use the following substitution: 

-, .co a' 
d7    -»   -i    +   —   , 

since the axial derivative involves both the wave variation and the amplitude variation. 
Normally the amplitude variation is negligible, but for large mode amplitudes, they can 
start to approach the axial current terms in magnitude. In particular, if we look at the 
neglect of the icoea'Aoz term with respect to p in the analysis of the previous section, 
which is more suitable to the GATOR approach, this requires that: 

a      Ve£
Z 

in addition to the obvious requirement for any modal method that 

a_..  (0 

It can be seen that as Ez increases, while a'la and Jz stay roughly the same, the restriction 
becomes more difficult to satisfy. In addition, the occurrence of a zero amplitude, a~0, as 
often occurs for the harmonic after saturation, is a clear violation of these 
approximations. It would be prudent for all modal methods to evaluate the above 
conditions to indicate to the user where there might be known violation of the physical 
approximations. 

In the case of the 2-D modal method (GATOR), it also seems obvious that the 
code should evaluate the error in Gauss's Law, V-E-p/e, since some aspects of the space- 
charge model may be in question. This is admittedly a difficult task for the programmer, 
since E is a complicated summation of different terms. Nevertheless, it would be of 
tremendous benefit for the user, and might point the way towards future improvements to 
the model. 

The modal codes should also perform particle-plus-field energy balances if they 
do not already. No energy balance mismatches were observed in the course of this study, 
nevertheless, energy imbalance is often the first sign of poor grid resolution, which an 
inexperienced user might unknowingly encounter. Also, repeating a conclusion of 
Section 3.2, it is not known whether there is net power associated with the AC-space- 
charge forces in GATOR, and whether or not it should be included in the power balance. 
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5.4 ACCURACY CHECK FOR THE PIC METHOD 
The accuracy of the Finite-Difference Particle-in-Cell (FD-PIC) method is 

primarily dependent on sufficient resolution of the physics of interest in terms of 
sufficiently small space and temporal grids and a sufficiently large number of particles. 
The accuracy is, therefore, typically tested by doubling the number of cells and/or 
particles, and verifying that the answer does not change significantly. 
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Figure 3.4.1 Accuracy check for the 2-D PIC method (MAGIC), by doubling the number of radial 
cells and the number of particles. The saturated power increased slightly from 105.8 
to 109.5 watts. All physical behavior remained identical, including no apparent change 
to the harmonic. The artificial floor on the power diagnostic was lowered for unknown 
reasons. 

The run using PPM confinement at 30 milliwatts input power was reran, with 
twice the resolution in terms of the radial grid, time step, and number of particles. The 
results are shown in Figure 3.4.1. The run time increased by a factor of 5. The results 
are summarized in the Figure below. Most significant was a slight increase in the saturated 
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power from 105.8 to 109.5 watts, a 3.5% change. The power difference remained at the 
same level for positions beyond saturation. The position of saturation changed by half an 
axial grid cell. Also, an unexpected lowering of the Poynting Splitter diagnostic's floor 
occurred, which remains unexplained. 
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SECTION 6. SUMMARY 
The basic conclusion of this comparison is that the codes are in excellent 

agreement up to saturation. Given that practical TWT's are rarely, if ever, built to operate 
beyond saturation, it is safe to say that all methods are recommended for design of 
practical TWT's. 

The one important physical difference between the methods is the lack of radial 
expansion in the 1-D modal method (CHRISTINE). This is an important effect, which 
prevents CHRISTINE from being confidently used for high-accuracy design work, unless 
the design has very strong and effective beam confinement. It may be possible to endow 
CHRISTINE with a radial expansion model in the future, and this would surely be a very 
worthwhile endeavor. 

Despite boasting the most self-consistent treatment of the three methods for high- 
accuracy design work, the 2-D PIC method suffers from several aspects which make its 
application to TWT design difficult for non-experts. Run times are small enough that a 
single TWT can be run in about 2 hours. This is good for cross-checking a design point, 
or perhaps evaluating a single parameteric variation, but is not useful for exploration of 
large regions of parameter space. Several other peculiarities of the PIC method are also 
nuisance factors, such as the difficulty with the low-level noise in the power diagnostic, 
and the beam launching mismatch difficulty. 

The 2-D modal method (GATOR) lies between the extremes of the 1-D modal 
(CHRISTINE) and 2-D PIC (MAGIC) methods, and clearly this approach is situated to be 
a workhorse design tool. Run times are sufficiently fast enough to explore large regions 
of parameter space, and the inclusion of radial motion makes this method suitable for 
high-accuracy design work. The primary challenge facing the 2-D modal method is to 
adequately predict not only the TWT performance, but to also predict the limitations of its 
space-charge model, without requiring the user to become engaged in a lengthy period of 
investigation. Careful analysis of the approximations involved in the method are also 
likely to result in improvements to the space-charge model, although it is unlikely that an 
"optimum" space-charge model exists. 

In the rare event where accurate analysis beyond saturation is required, this study 
indicates that the 2-D modal method's space-charge model is probably inadequate, and 
hence 2-D PIC should always be used, at least until improvements are made to the other 
methods. 

Some behaviors observed in this study remain "mysterious" and warrant further 
investigation. The most important is probably the difference in the behavior of the 
harmonics near saturation. Here both modal methods agree, but disagree with the PIC 
method. Also, the counter-intuitive slope of the radial shear remains unexplained. 
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